Linrob URCap Manual - ENG

Inhalt

1. General information
2. Connect linrob with UR
2.1. Get the latest version
2.2. Install software
2.3. Activate linrob
3. The linrob URCap interface
3.1. Interface
3.2. Use Nodes to program the linrob
3.3. Commands
3.3.1. Enable and Disable
3.3.2. Reference
3.3.3. Reset
3.3.4.Jog
3.3.5. Disable
3.3.6. Enable
3.3.7. Move
3.4. Helper functions
3.4.1. Axis in motion
3.4.2. Wait for Position
3.4.3. Get STO state
3.4.4. Get state
3.4.5. Get position
3.4.6. Get velocity
3.5. Example program
4. Combined Motions
5. Handling State Transitions
6. Safety

7. Known issues

© 00 00 00 00 00 N U1 U1 W W DD NN

[T N S S g e T Y
R O O 00 Ul B W W N DNDNDR O O

IiNn/ob

Author: Karim Zanaty

Version: v1.4.4 dev b

1. General information

The linrob URCap is working with Polyscope 5.0.x and higher.
The linrob URCap does not work with the latest, Polyscope X, yet.

To check the Polyscope version currently installed in your robot, click the About button on the
home screen.

@

PolyScope Robot User Interface

Please select

Run Program

UNIVERSAL
ROBOTS e

Setup Robot

- About

Shutdown Robot

2. Connect linrob with UR

2.1. Get the latest version

Visit https://linrob.io/produkte/ur and get the latest up-to-date manual. Download the
corresponding linrob-x.x.x.urcap and save it on an USB stick.

https://linrob.io/produkte/ur

2.2. Install software
After you Get the latest version, insert the USB stick into the teach pendant of the robot.
Tap the triple bar icon in the upper right corner and select the System menu on the left.

Tap the URCaps submenu and then tap the "+" sign at the bottom of the screen. Open linrob-
x.x.x.urcap and use the Restart button to activate the URCap.

RE 2Z2+ QM i

Active URCaps Inactive URCaps
@ linrob (1.8.19) = Remote TCP & Toolpath ~
@ linrob (1.1.0)

@ linrob (1.3.0)
@ linrob (1.4.0)
@ linrob (1.5.0)
@ linrob (1.6.0)
@ linrob (1.7.0) h

System
Backup

Robot
Registration
URCaps
URCap Information
Remote
Control

Constrained
Freedrive

Network

Update

) Security

2.3. Activate linrob

If no linrob device is connected to the UR, the following screen will indicate that.

Universal Robots Graphical Programming Environment

2P QHE

What would you like tc

[no linrob connected!]

R 1=

RUN A PROGRAM PROGRAM THE ROBO'

I-\,Dwsconnected from linrob .

O Don't show this message again

O Power off Speed EEE—— 100% Simulation .

Therefore, tap the Installation button at the top of the left side. Then, tap the URCaps button in the
navigation panel on the left side. Select “linrob Setup” in the dropdown list.

A tab will show for setting the server address and server port.

General linrob Setup

Features
[Server IP Adress] [Server Port]

> Fieldbus

192.168.2.102 40406
‘W URCaps

el ©

192.168.2.102 ir's response: connect timed out

(e <<
7 8 9
4 5 6
1 2 3
° [no Iinrob cennected!]
0o . +
linrab [V

O Power off Speed (—— 100% Simulation .

o Linrob port is always : 40400

The IP address is usually 192.168.1.1

Congratulations, now you are connected to the Linrob.

3. The linrob URCap interface

linrob axes integrate seamlessly with Universal Robots by means of a URCap plugin. This plugin
exposes a set of linrob specific command blocks to control and operate the connected axes. This

section documents the interface of the URCap plugin.

3.1. Interface

The interface, as shown in the image below, provides a user-friendly environment for managing

your Linrob setup.

Universal Robots Graphical Programming Environment

Run allation Move [
[eoanin |
[Server IP Adress] [Server Port]
192.168.2.102 40406

WV URCaps
linrob Setup Connect to linrob Disconnect|

@ Conrected to linrob: Lr-re3.3

[Inrob Axis Configuration]

Axis Name: X-Axis

Serlalnumber: 2147630346

Safety State: STO OK!

Axis State: Enabled

Position limit min: 0.0 mm | Position limit max: 1600.0 mm | Veloclty limit max: 250.0 mm/s

linrab [N

O Power off

The Linrob Setup interface is divided into several sections:

Connection
This section displays the current connection status. Once connected, it shows the server IP address
and port number used for the connection, as well as buttons to either connect to or disconnect from

the Linrob.

Linrob Axis Configuration
Below the connection status, yow’ll find the Linrob Axis Configuration section. It displays the axis
current data, safety, and operational states, including position and velocity limits.

n/
e

Axis State: STANDSTILL

Safety State: STO inactive
Position limit min: -1000.0 mm
Position limit max: 3150.0 mm

Velocity limit max: 400.0 mm/s

| €

Actual Position: .0 mm

Actual Welocity: .0 mmys

Disable Reference Axis

Reset Axis

Speed: [100%]

I-\lConnected to linrok: LRE:3.3 .

The "UR+" toolbar, displayed in the top right corner, is a quick access toolbar, provides jog controls,
an enable/disable toggle, referencing and reset, and displays current axis data for efficient
operation.

The Speed Slider, located beneath the reset button, is exclusively applicable during
jogging.

o The maximum velocity is 250 mm/s.

In this version, modification of the scale factor is not available to users. To request
changes, please contact us.

3.2. Use Nodes to program the linrob

Tap the Program button on the left side.

» Tap the URCaps button.

* The only available command is LRMoveL. Insert the command as often as you need to open a
script for each desired movement.

Universal Robots Graphical Programming Environment

Run Prog Move og
o
> Advanced
1 ¥ Robot Program

Variables

LRMovelL
> Templates 2 = [RMovel X-Axis [0.0,20.0,0.0,20.0
WV URCaps [Select Axis]
LRMovelL
X-Axis v
Axis State: Enabled Position fimit max: 1600.0 mm
Safety State: STO OK! Position fimit min: 0.0 mm
d ; Actual Position: 123.4500 mm Welocity limit max; 250,00 mm/s
Velocity [mm/s] Deceleration [mm/s?]
20 20
Acceleration [mm/s?] Position [mm]
20 0 re
>

23S XBHETZ linob

Speed ¢

o Power off

You have to name each script after one axis.

Simulation .

o The box next to the script is yellow if no position and/or speed is registered.

If every position/speed is valid, the box color turns into white.

Now you can move the linrob to your desired position once you start the program.

The permissible ranges differ for each application and depend
on the limits that are either defined based on test results or customer
requirements. The units of the parameters are specified in:
o Acceleration: mm/s?
Deceleration: mm/s?
Velocity: mm/s
Position: mm

3.3. Commands

The following button commands are fixed implementation as described below:

3.3.1. Enable and Disable
The Enable and Disable button works depending on the state of the axis. Only in disabled
states the axis will be enabled. Only in enabled states the axis will be disabled.

The functions Disable and Enable are called in the background.

3.3.2. Reference
An unreferenced axis must be referenced. Otherwise, the axis will not accept any sent motion
commands.

The axis will move with a fixed slow velocity into the negative direction. This happens until a
rising edge signal from the inductive sensor is detected, setting the reached position to 0.
Subsequently, the axis will move to the position 100.00 mm.

Please do not interact with the axis during this process.

3.3.3. Reset

The reset must be set in two scenarios:

¢ Axis is in state "OUTDATED"
¢ Axis is in state "ERRORSTOP"

Being "outdated" indicates, that the axis is in a configuration mode and might faced issues
during the start up of the system. A simple reset might fix the issue. However, a restart of the
complete system might be necessary.

An error stop occurs when the drive faces issues that interfere with the usual operations.
These can be in range of >invalid motion commands due to limits< up to >emergency stops<
triggered by an operator.

3.3.4.Jog

The two arrows up and down on the right side allow tha manual movement of the axis. The
target velocity (250 mm/s * slide override) as well as the other dynamic parameters are fixed
and cannot be changed.

Only an enabled axis in state "STANDSTILL" can and should be moved that way.

The following script commands can be used inside the programming interface and affect the drive
actively.

3.3.5. Disable

1r_disable_servo(axis)

Once successfully executed, the disabled state is clearly indicated within the user interface.

e
[Serwver |IP Adress] [Server Port]
) Fieldbus Axis State: DISABLED
192.168.56.70 40400
+
S
A 4

Safety State: STO inactive

v URCaps
linrob Setup Connect to linrob Position limit min; -1000.0 mm

Position limit max: 3150.0 mm

@ Connected to linrob: LRE:3.3
Welocity limit max: 400.0 mm/s

[linrob Axis Configuration] Actual Position: .0 mm -
- Actual Velocity: .0 mm/s
| Enable | | Reference Axis |
Axis Name: X-Axis
| Reset Axis |

Serialnumber: 2147630346
Speed: [100% 1

Safety State: STO inactive .
Axis State: DISABLED 7/

r\ Connected to linrob: LRE:3.3 (]
Position limit min: -1000.0 mm | Position limit max: 3150.0 mm |Ve___,

linob r\’

O Power off Speed (e ——————— Suw,nath:-ﬁ.

This function disables the drive and applies the break, if available. The attached axes are not
operational and in a safe state.

axis (int)::
Axis to select from available connected. Not in use!

3.3.6. Enable

1r_enable servo(axis)

This function enabled the drive and brings it under regulation. The brake, if available, is released.

axis (int)::
Axis to select from available connected. Not in use!

3.3.7. Move

1r_move_1(axis, position, velocity, acceleration, deceleration)

This function moves the axis absolute to a defined position.

axis (int)::
Axis to select from available connected. Not in use!
position (float)::
Target position in mm.
velocity (float)::
Target velocity in mm/s.
acceleration (float)::

Target acceleration in mm/s?.
deceleration (float)::
Target deceleration in mm/s?.

10

3.4. Helper functions

As opposed to commands, that don”t have a return value; the Linrob URcap also exposes a number
of helper functions that return useful information. They typically are used as the expression of a
conditional, such as an if statement.

11

3.4.1. Axis in motion

1r_axis_in_motion(axis)

Returns, if the specified axis is currently in motion as a string boolean.

axis (int)::
Axis to select from available connected (e.g. "X-Axis"). Not in use!

3.4.2. Wait for Position

1r_wait_for_position(axis)

Returns, if the last commanded target position was reached by the specified axis as a string
boolean

axis (int)::
Axis to select from available connected (e.g. "X-Axis"). Not in use!

3.4.3. Get STO state

1r_get_actual_sto_state(axis)

Returns the current state of the STO (Safe Torque Off) signal of the specified drive. Usually, all
drives should return the same signal. Value is a string boolean

axis (int)::
Axis to select from available connected. Not in use!

12

3.4.4. Get state

1r_get_actual_state(axis)

Returns the current state of the specified axis. The state can be one of :

OUTDATED_RESET

Axis must be reset, drive is in configuration state.

OUTDATED

Axis must be reset, drive is in configuration state. (Bug state)

UNREF_DISABLED

Axis is disabled and not references. Please enable.

UNREFERENCED

Axis is enabled but not referenced. Please reference.

DISABLED

Axis is disabled. It cannot perform any motion.

STANDSTILL

Axis is enabled and ready to move.

STANDSTILL_PENDING

Axis will be enabled, process not finished.

ABORTING

Current motion will be stopped. Deceleration phase.

DISCRETE_MOTION

Axis is in motion.

ERRORSTOP

Error occured and effected drive. Axis must be reset.

axis (int)::
Axis to select from available connected. Not in use!

3.4.5. Get position

13

1r_get_actual_position(axis)
Returns the actual position in mm.

axis (int)::
Axis to select from available connected. Not in use!

3.4.6. Get velocity

1r_get_actual_velocity(axis)
Returns the actual velocity in mm/s.

axis (int)::
Axis to select from available connected. Not in use!

14

3.5. Example program

Let’s examine our program example in more detail. As highlighted earlier, axis control can be
executed in two ways: one is integrated within the installation interface, and the other is activated
via Nodes in the program nodes interface. By examining both methods in this example, we aim to
provide a clear and thorough understanding of the system’s functionality. So, let’s proceed.

¥ Robot Program

2 Wait: 3.0

¢ ¥ If Ir_get_actual sto_state("X-Axis")£"True"
[Popup: STO is okey

¥ If Ir_axis_in_motion("X-Axis")<"False"
[Popup: The axis is not moving

2 Wait: 1.0

= | RMowel X-Axis [500.0;20.0;0.0;20.0]

B2 Wait: 3.0

W m o~ 3 N W M
=3

10 = | RMovel X-Axis [100.0;20.0;0.0,20.0]
11 & Ir_move |("X-Axis", 250, 150, 200, 70)
12 & Ir_wait_for_position("X-Axis")

13 @ § IfIr_get actual position("X-Axis")< "250"
14 & Ir_move I("X-Axis", 600, 150, 200, 70)
15 Ir_wait_for_position("X-Axis")

16 2 Wait: 2.0

17 @ ¥ If Ir_get actual state("X-Axis")Z"Enabled"
18 & Ir_disable servo("X-Axis")

19 E Wait: 2.0

20 ¢ b IfIr_get actual state("X-Axis")="Disabled"
21 Ir_enable_servo("X-Axis")

22 & Ir_mowve_ |("X-Axis", 100, 8, 200, 70)
23 X Wait: 4.0
24 & b If Ir_get actual velocity("X-Axis")="8"

25 & Ir_move I("X-Axis", 450, 200, 200, 70)
26 ¢ P IfIr_axis_in_motion("X-Axis")="True"
27 [Popup: The axis is mowving

28 & Ir wait_for_position("X-Axis")
29 H Wait: 2.0
1. Line 2: The program begins with a three-second wait (Wait: 3.0).

2. Lines 3-4: It checks the actual STO state of the "X-Axis." If True, a popup appears stating "STO is
okey" (If 1r_get_actual_sto_state("X-Axis")=="True" followed by Popup: STO is okey).

3. Line 5-6: The program checks if the "X-Axis" is in motion. If False, a popup states "The axis is not

15

10.

11.

12.

13.

14.

15.

16.

16

moving" (If 1r_axis_in_motion("X-Axis")=="False" followed by Popup: The axis is not moving).
Line 7: There’s a one-second wait (Wait: 1.0).

Line 8: An LRMoveL command moves the X-Axis to a position of 500 (LRMovel X-Axis [
500.0;20.0;0.0;20.0 1).

Line 9: This is followed by a three-second wait (Wait: 3.0).

Line 10: Another LRMoveL command moves the X-Axis to a position of 100 (LRMovel X-Axis [
100.0;20.0;0.0;20.0 1).

Line 11-12: The "X-Axis" is commanded to move to a position of 250, and the program waits for
it to reach this position (lr_move_L1("X-Axis", 250, 150, 200, 70) followed by
1r_wait_for_position("X-Axis")).

Line 13-14: The actual position is checked, and if it’s 250, another move command is issued (If
1r_get_actual_position("X-Axis")=="250" followed by 1r_move_1("X-Axis", 600, 150, 200, 70)).

Line 15-18: After waiting for the position to be reached and a subsequent two-second wait, the
program checks if the "X-Axis" is enabled. If so, it disables the servo (If 1r_get_actual_state("X-
Axis")=="Enabled" followed by 1r_disable_servo("X-Axis")).

Line 19-20: The state is checked again; if the axis is disabled, the servo is enabled (If
1r_get_actual_state("X-Axis")=="Disabled" followed by 1r_enable_servo("X-Axis")).

Line 22-23: The program moves the "X-Axis" to a new position with a slower velocity and waits
for four seconds (1r_move_1("X-Axis", 100, 8, 200, 70) followed by Wait: 4.0).

Line 24-25: The actual velocity is checked. If it is 8, a command is issued to move the axis (If
1r_get_actual_velocity("X-Axis")=="8" followed by 1r_move_1("X-Axis", 450, 200, 200, 70)).

Line 26-27: It checks if the "X-Axis" is in motion. If True, a popup indicates "The axis is moving"
(If 1r_axis_in_motion("X-Axis")=="True" followed by Popup: The axis is moving).

Line 28: The program waits for the "X-Axis" to reach the commanded position
(Ir_wait_for_position("X-Axis")).

Line 29: The sequence ends with a final two-second wait (Wait: 2.0).

This example program showcases the use of Linrob URCap commands for
o moving an axis, enabling/disabling the servo, checking the state of the

axis, and ensuring that movements are executed as expected through

conditional checks and popup notifications for user awareness.

Within the installation interface, executing the LRMovel command is a
self-contained action: the command autonomously monitors its progress

g and completes once the specified position is achieved. On the other

hand, in the program node, the 1r_move_l command requires an explicit
confirmation of position attainment. This is done by using the
1r_wait_for_position command, which acts as a sentinel, ensuring that
the program pauses until the movement to the intended position is

confirmed.

17

4. Combined Motions

In this section, a method for executing combined movements of the robot and our Linrob axis is
detailed.

Under this single-threaded approach, combined movement is executed sequentially. Begin by
initiating the movement of the Linrob axis using the 1r_move_l command, ensuring all required
parameters are accurately set. Following the completion of this step, you can then select either the
movel or moveJ command, depending on your requirements, to execute the robot’s movement.

18

5. Handling State Transitions

In this section, we delve into the behavioral dynamics of Linrob in response to user interactions,
specifically the pressing of play, stop, or pause buttons within the Linrob URcap interface on the
teach pendant.

Initial State: Stopped

Upon the installation of the Linrob URcap and the creation of your custom program, the initial state
observed is 'Stopped'. This state is by design, necessitating the user to initiate the program by
pressing the play button.

Transitioning States: Play, Pause, and Stop

Play to Pause: When the user transitions the program from play to pause, Linrob enters a
temporary pause state. After this transition, the axis will stop its current movement right after the
transition.

Pause to Resume: Upon pressing the resume button, Linrob transitions out of the pause state and
resuming the application from the point of pause. If the axis interrupted its movement, the re-
triggered movement will be executed but will not wait until the target position is reached! (See
"Known issues")

Pressing Stop: Activating the stop button initiates a complete halt of the application. The axis
executes the last command completely. To resume operations after a stop, restarting from the
beginning of or any other point within the program is necessary.

19

6. Safety

In our Linrob URCap setup, we have integrated the UR controller’s configurable outputs (CO1 and
COO0) with our system’s Safe Torque Off (STO) pins. This integration creates a unified emergency
stop system.

o To resume normal operation after an emergency stop has been engaged, it is
necessary to release the emergency stop button.

Activating the emergency stop button on the teach pendant instantly triggers a
global safety response. This action not only halts all operations of the robot but
also ceases any movement of the Linrob axis.

After the emergency stop has been activated, particularly during axis jogging via
the UR+ toolbar, it is essential to properly reset the system. Recovery involves re-
enabling the axis.

If the emergency stop is activated while the main robot program is running
through the Program interface, the entire program will be halted immediately.
Recovery may involve re-enabling of the axis.

Should there be a need to adjust operational parameters beyond the stated ranges,
it is advisable to contact our support team for assistance.

@ b b P

20

7. Known issues

Every software comes with a certain amount of know issues. Although we are working
continuously on our product and its features, we are aware of some smaller issues. We encourage
every customer to report unknown issues to us!

In the current version, in the case of the axis being moved using the toolbar
(jogging) and an e-stop being triggered in the same time, the pressed button stays
highlighted in the UI even when no longer pressed.

The label of the "Enable/Disable" button is correct most of the time. However, after
startup it copies the actual state of the axis and displays it. After a reset, the axis
usually enters the state "DISABLED" but the button label does not follow.

The label does not affect the functionality.

Our linCap comes in updated versions regularly, especially at the current state.
Alongside the linCap comes the intermediate application handling the UR requests
and convert them to executable commands for the linrob controller.

We are working on an intuitive, easy to follow compatibility check. During this
process we encourage you to get in contact as soon as you face any
incompatibilities.

When the axis is paused (movement interrupted) and the program is resumed, the
last command will be sent again. However, it does wait until the target position is
reached and jumps right into the following command.

21

	Linrob URCap Manual - ENG
	Inhalt
	1. General information
	2. Connect linrob with UR
	2.1. Get the latest version
	2.2. Install software
	2.3. Activate linrob

	3. The linrob URCap interface
	3.1. Interface
	3.2. Use Nodes to program the linrob
	3.3. Commands
	3.3.1. Enable and Disable
	3.3.2. Reference
	3.3.3. Reset
	3.3.4. Jog
	3.3.5. Disable
	3.3.6. Enable
	3.3.7. Move

	3.4. Helper functions
	3.4.1. Axis in motion
	3.4.2. Wait for Position
	3.4.3. Get STO state
	3.4.4. Get state
	3.4.5. Get position
	3.4.6. Get velocity

	3.5. Example program

	4. Combined Motions
	5. Handling State Transitions
	6. Safety
	7. Known issues

